Category: USA

Konarka Technologies, Inc.

Konarka Technologies, Inc
116 John Street
Suite 12, 3rd Floor
Lowell, MA 01852 USA

P: +1 978-569-1400
F: +1 978-569-1402

About

Konarka is developing and advancing nano-enabled polymer photovoltaic materials that are lightweight, flexible and more versatile than traditional solar materials.

Using proprietary materials developed by our world-class technical team and low cost manufacturing processes, Konarka scientists and engineers have created an entirely unique solar material with attributes unlike any existing product. This new breed of coatable, flexible, plastic photovoltaics can be used in a wide range of applications where traditional photovoltaics cannot compete. Konarka’s technical advances will expand the relevance of solar technology across product lines, as well as across economic divides, providing low cost power wherever it is needed.

Konarka currently employs over 70 staff in the US, Europe, and Asia , with global headquarters in Lowell, Massachusetts, and European operations in Germany, Austria and Switzerland, and a presence in Asia.

Technology

Konarka’s Power Plastic® is made using low cost organic materials (organic photovoltaics, or OPV). Such 3rd generation technologies are rapidly emerging to displace 1st and 2nd generation technologies by overcoming their technical limitations and delivering a truly cost-effective renewable power solution.

1st Generation

Crystalline silicon photovoltaic (PV) technology was first developed more than 50 years ago at Bell Labs in New Jersey based on silicon wafers, and is known as 1st generation solar technology. Silicon-based technology is technically proven and reliable, and has succeeded in achieving market penetration, primarily in off-grid remote areas and in grid-connected applications where sufficient subsidies are available to offset its high cost. There are several inherent limitations to this 1st generation, however. Silicon wafers are fragile, making processing difficult and limiting potential applications. The process is very labor and energy intensive, and manufacturing plant capital costs are high, limiting scale-up potential. And because materials represent more than 60% of manufacturing costs and silicon supply is finite, the long term potential for cost reduction is insufficient to deliver broadly affordable energy.

2nd Generation

To simplify manufacturing and reduce costs, a 2nd generation known as thin film technologies was developed. These technologies are typically made by depositing a thin layer of photo-active material onto glass or a flexible substrate, including metal foils, and they commonly use amorphous silicon (a-Si), copper indium gallium diselenide (CIGS), or cadmium telluride (CdTe) as the semiconductor. Thin film PV is less subject to breakage when manufactured on a flexible foil. However, the promise of low cost power has not been realized, and efficiency remains lower than that of 1st generation solar. Some questions also remain about the toxic legacy of the materials, both in manufacturing and at the end of life.

3rd Generation

It has been estimated that 3rd generation solar technologies will achieve higher efficiencies and lower costs than 1st or 2nd generation technologies (Green, M., Third Generation Photovoltaics, Advanced Solar Energy Conversion). Today, the 3rd generation approaches being investigated include dye-sensitized titania solar cells, organic photovoltaics, tandem cells, and materials that generate multiple electron-hole pairs. To maximize performance, Konarka scientists have been involved in research efforts in all of these areas, including novel combinations of these approaches.

Products

Konarka Power Plastic is a photovoltaic material that captures both indoor and outdoor light and converts it into direct current (DC) electrical energy. This energy can be used immediately, stored for later use, or converted to other forms. Power Plastic can be applied to a limitless number of potential applications – from microelectronics to portable power, remote power and building-integrated applications.

They will soon be announcing the availability of their seven standard products. These products include Konarka Power Plastic panels ranging from their KT 25 (0.25W) to their KT 3000 (26W), perfect for many portable and remote power applications.

KT 3000 (26 Watt–16 Volt)

Measuring 2384mm x 652mm (93.8″ x 25.6″) enables remote power generation for battery charging and communication devices.

KT 1500 (12 Watt–16 Volt)

Measuring 1104mm x 652mm (43.5″ x 25.6″) is designed for remote power applications requiring 12 volts of power.

KT 800 (8 Watt–8 Volt/1-Amp)

Measuring 1530mm x 352mm (60.2″ x 13.8″) is ideal for charging batteries for portable mobile phone-sized electronic devices. Connect two panels in series for charging 12-volt batteries to power laptop-sized devices.

KT 500 (5 Watt–8 Volt)

Measuring 890mm x 352mm (35.1″ x 13.8″) can harness enough power to charge portable batteries, mobile phones, PDA’s and other small devices.

KT 200 (2 Watt–8 Volt)

Measuring 464mm x 352mm (18.3″ x 13.8″) can generate enough power to charge portable batteries.

KT 50 (0.5 Watt–4 Volt)

Measuring 194mm x 172mm (7.6″ x 6.8″) can be affixed to almost any surface for charging microelectronics and sensors.

KT 25 (0.25 Watt–4 Volt)

Measuring 117mm x 172mm (4.6″ x 6.8″) can be affixed to almost any surface for charging microelectronics and sensors.

EnerG2, Inc.

 EnerG2, Inc.

Call
+1.206.274.6622

Fax
+1.425.650.7012

Email
info@energ2.com

EnerG2, Inc.
810 3rd Avenue, Suite 120
Seattle, WA  98104

About

The Science of Storage

EnerG2 and its state-of-the-art scientific approach to energy storage materials has been backed over the past five years by the public and private sectors.  Among the company’s supporters: the University of Washington, the Washington Technology Center, a state-supported economic development agency that finances applications of university research, WRF Capital of Seattle, Washington, the Sustainability Investment Fund of Portland, Oregon, OVP Venture Partners of Kirkland, Washington, and Firelake Capital Management of Palo Alto, California.

In October 2008, EnerG2 raised $8.5 million in Series A financing. The financing was led by OVP and Firelake.

Here are some of the most frequently asked questions about EnerG2:

What does the company do?

EnerG2 engineers advanced nano-structured materials for energy storage breakthroughs.

How important is energy storage to the sustainable economy?

We believe that efficient, reliable and cost-effective clean energy storage will be an essential element of the emerging post-petroleum economy.

What makes EnerG2 different?

EnerG2 approaches the problem with engineered materials solutions; and, from our perspective, it’s the materials that matter in any energy storage device.

Rather than accept the limitations of naturally occurring materials, EnerG2 uses materials science to assemble cutting-edge products at the molecular level. Controlling the molecular structure and assembly process of our engineered materials at the earliest stage possible provides flexibility, lowers costs and maximizes performance. As a result, we are delivering new capabilities and creating fresh opportunities in energy storage.

What is EnerG2 focused on today?

EnerG2 is currently focused on customizing electrode materials to enhance energy and power density in ultracapacitors, one of the essential engines of the new energy economy. Ultracapacitors, which are dependent on the performance of their materials, store and release more energy faster than conventional batteries. The size and make-up of the electrodes’ surface area helps ultracapacitors store and supply large bursts of energy; the materials also effectively enable limitless cycle life.

What are the most promising applications for ultracapacitors?

Ultracapacitors containing EnerG2 materials will be increasingly embraced by the automotive industry for hybrid electric vehicles, by electronics manufacturers for enhancing the life and usability of consumer goods, and by a variety of industrial customers to deliver an ever-increasing breadth of new ways to improve energy efficiency.

What’s next for EnerG2?

In the future, EnerG2 materials may be used to improve natural gas, methane and hydrogen storage as well as lithium-ion batteries.

Technology

The patented and proprietary technology used by EnerG2 is based on nano-structured carbon materials that are finely controlled and offer ultra-high surface areas.  These materials are extremely conductive and are tremendously attractive to energy-storing molecules such as electrolytic ions, methane, natural gas and hydrogen. The result: maximum energy storage that is exceedingly cost effective. Working in collaboration with the University of Washington Department of Materials Science & Engineering, EnerG2 has developed unique sol-gel processing technologies to construct its carbon materials.  Sol-gel processing, which creates optimal structure and purity in the finished carbon product, is a chemical synthesis that gels colloidal suspensions to form solids through heat and catalysts. EnerG2 has invented a patented ability to control the hydrolysis and condensation reactions within the gelling process, and this allows the materials’ surface structures and pore-size distributions to be shaped, molded and customized for a variety of critical energy storage uses. The EnerG2 approach to energy storage material manufacturing is unique.  Most commercially available materials for energy storage are produced from naturally occurring precursors; therefore much of the performance of these derivative materials is determined by natural physical properties of the selected precursor. As a result, important characteristics such as pore-size distribution and purity are fixed within the natural precursor and are merely exposed by competitors’ various processing approaches.  Innovation at EnerG2 is derived from molecular self-assembly; to put it simply, we build our energy storage materials from scratch, and this leads to greater structural control, improved product purity and an ability to escape today’s energy storage performance limitations. EnerG2 has developed these processing capabilities with an explicit and aggressive focus on cost control.  To avoid the expensive processing typically associated with nanotechnology, the company has leveraged large-scale commercial processing technologies from established industries to design a production approach that is both relatively inexpensive and inherently scalable.

EnerG2 focuses its efforts and attention on three core carbon material groups:

  • Granules in infinitely variable carbon particle sizes are used to make high-performance electrode materials for ultracapacitors.

  • Monoliths are the carbon materials composed of the granules in relatively solid form prior to milling and are used in methane and natural gas storage systems.

  • Nano-Composites are created when carbon materials are mixed with chemical and metal hydrides; they are central to hydrogen storage systems.

Qteros

Qteros

100 Campus Drive
Marlborough, MA 01752
Phone: 508-281-4060

About

In just two years, the Qteros team has made remarkable progress enhancing strains of the Q Microbe. Our goal is to keep refining this process until our technology provides the world’s most economical and sustainable transportation energy.

The story of Qteros began in 1996 with a walk near the Quabbin Reservoir in Western Massachusetts. University of Massachusetts microbiologist Dr. Susan Leschine and her lab assistant, Tom Warnick, were looking for a microbe that breaks down plant waste, but they found something far more noteworthy. The microscopic organism they sampled from the mud and later named Clostridium phytofermentans, was isolated and recognized as a novel life form.

Known today as Q Microbe, this tiny organism has an enormous appetite for all types of cellulose and the ability to convert that cellulose directly into ethanol. What the scientists found in a spoonful of dirt has been referred to by the director of the National Renewable Energy Lab as the Holy Grail of cellulosic ethanol.

Qteros has worked with this remarkable microbe to develop and commercialize a pioneering, clean fuel technology that comes from the earth. By overcoming the recalcitrance of cellulose to release the sugars deep within the plant cell wall, the Q Microbe does today what other researchers hope to do sometime in the next decade. The company’s proprietary Complete Cellulosic Conversion (C3) process simplifies and dramatically improves the economics of the equation.

Qteros technology is impressively versatile. It breaks down and ferments many types of non-food plant and tree waste in an ethanol-producing process that doesn’t compete with the food industry. It reduces the conventional two-step conversion process to one step, saving time, money, and energy. In addition, our patented Q Microbe is naturally occurring, and the process is sustainable and very close to carbon neutral.

Technology

Creating a clean, sustainable, domestic transportation fuel from non-food sources requires scientific ingenuity and disciplined, hard work. The Qteros team is on the technology development path to achieve this ambitious goal with the Q Microbe.

var top = ’70px’; var right = ‘390px’; var bgcolor = ‘#000000’; var opacity = ‘0’; var text_color = ‘#ffffff’; toppic_textbox();


Q-Microbe
The Q Microbe (Clostridium phytofermentans) is a super-bug. This lollipop-shaped microscopic organism has unique properties that make it ideally suited to the production of cellulosic ethanol from a variety of non-food plant materials.

Graph of lignocel

Fig. 1 – What is lignocellulosic biomass?

Typically, cellulosic biomass goes through an intensive pretreatment step. Then enzymes are used to break down the biomass into simple sugars suitable for fermentation by yeast into ethanol. These enzymes, along with the intensive pretreatment required for their use, are the largest single-cost component of cellulosic ethanol production. The Qteros team has developed the technology to eliminate the need for a separate enzymatic breakdown step that also broadens pretreatment options.

The Q Microbe breaks down a wide variety of plant materials, including corn residues, cane bagasse, woody biomass, cellulose waste, and more. It produces prodigious amounts of ethanol by generating its own enzymes and then fermenting the C5 and C6 sugars. The microbe can be engineered to optimize ethanol output from a specific plant material, increasing net energy yield for the whole system. It is the “yeast” component of the conventional bioconversion process plus the enzyme component, all in one.

The C3 Process

Overcoming the difficulty and expense of breaking down plant material is one of the biggest challenges facing the emerging cellulosic ethanol industry. Solving this is the key to a low-cost solution, and Qteros has that solution.

Graph of C3 process

Fig. 1 – Conventional cellulosic ethanol production
versus the C3 Process

In our proprietary Complete Cellulosic Conversion (C3) process, the Q Microbe simultaneously decomposes and ferments cellulosic biomass to ethanol. It converts both cellulose and hemicellulosic plant material. This remarkable microbe not only eliminates the need for costly enzymes, it simplifies the entire ethanol production process, allowing for pre-treatments that are easier on the environment.

Getting More for Less
This ability of the Q Microbe to convert all of the fermentable components of biomass to ethanol enables the C3 process to have higher yields than other bioconversion processes. By avoiding the cost associated with the production, purification, and application of specific enzyme cocktails, it offers cost savings to facilitate large-scale ethanol production from a wide variety of cellulosic biomass. It also allows for a broader range of pretreatment options with further cost savings.

SolFocus Inc.

SolFocus Inc.

 

 

SolFocus, Inc.

510 Logue Avenue
Mountain View, CA 94043
Phone: +1.650.623.7100
Fax: +1.650.623.7101

 

SolFocus Europe, Inc.

María de Molina 39 7° Izq.
28006 Madrid, Spain
Phone: + 34.91.177.3900
About

SolFocus has developed leading concentrator photovoltaic (CPV) technology which combines high-efficiency solar cells (approaching 40%) and advanced optics to provide solar energy solutions which are scalable, dependable and capable of delivering on the promise of clean, low-cost, renewable energy.

The SolFocus mission is to enable solar energy generation at a Levelized Cost of Energy (LCOE) competitive with traditional fossil fuel sources. To achieve this goal, SolFocus has developed leading concentrator photovoltaic (CPV) technology which combines high-efficiency solar cells (approaching 40%) and advanced optics to provide solar energy solutions which are scalable, dependable and capable of delivering on the promise of clean, low-cost, renewable energy. SolFocus is headquartered in Mountain View, California with European operations headquartered in Madrid, Spain, and manufacturing in Mesa, Arizona as well as with manufacturing partners in India and China.

Technolgy

SolFocus Technology Highlights

By concentrating sunlight using innovative optics onto a small area of high-efficiency solar cell material, SolFocus systems dramatically reduce the amount of expensive and often supply-constrained solar material used in the system. Learn more about SolFocus technology by selecting the components below.

Sol Focus CPV Sytems

CPV Power Unit

CPV Power Unit

Solfocus has developed an innovative reflective optic system which includes a primary mirror to capture sunlight and secondary mirror and non-imaging optic to concentrate it at 500 suns onto high-efficiency III-V solar cells.

CPV Power Unit

  • All-glass optics for durability
  • Low optical losses for high efficiency
  • Wide acceptance angle for high yield and lower cost
  • Designed to avoid chromatic aberrations and cell mismatching
  • High efficiency cells greater than 38% efficiency compared to 13% to 19% efficiency for silicon PV cells
  • 1cm2 cell per unit results in use of 1/1000th the active PV material
  • Robust cell design, originally designed for the demanding environment of satellites in space
  • High performance at high temperatures – not impacted by temperature degradation as are silicon PV cells

CPV Panel

CPV Panel

The CPV Power units are integrated into a robust panel design which is optimized for high efficiency, high reliability, and field durability. The panels are TUV certified and CEC listed.

CPV Panel

  • Industry-leading efficiency and power output
  • TUV certified, CEC listed
  • Power output rated at operational conditions
  • High energy output sustained at high temperatures
  • Utilize field-proven materials for high reliability and field durability
  • 95% glass and aluminum components for high recyclability
  • Glass components immune to long-term UV degradation
  • Panels fully enclosed with no exposed mirrors
  • Passive cooling system for high reliability and low cost

CPV System

CPV System

SolFocus CPV systems with their industry-leading efficiency can be deployed from small to large-scale installations, providing high energy output and maximum energy production per area of land.

CPV System

  • Maintains high energy output at high temperatures
  • Maximizes energy production per acre/hectare to reduce land use
  • Systems scalable from hundreds of kilowatts to 50+ megawatt installations
  • Allows dual-use of land
  • Robust, industrialized design for field durability and system reliability
  • High-volume manufacturing not impacted by silicon supply constraints

Dual-Axis Tracker

Dual-Axis Tracker

SolFocus CPV panels are integrated with dual axis trackers and precise tracker control systems which are optimized for the SolFocus panels, maintaining high energy output throughout the day.

Dual-Axis Tracker

  • SolFocus designed trackers are optimized for SolFocus panels and integrated into a complete system
  • Engineered for optimum stiffness and provide tracking accuracy of 0.1 degree
  • Extended tracking range for all locations
  • Ephemeris-based open-loop tracking
  • Self-calibration using proprietary SolFocus control system
  • Wind and night stow positions for safety and reliability
  • System monitoring software calibrates pointing accuracy
  • Remote system management reduces onsite maintenance

GreatPoint Energy

GreatPoint Energy

GreatPoint Energy
222 Third Street
Cambridge, MA 02142
Phone: 617.401.8760
Fax: 617.849.5691

GreatPoint Energy
222 S. Riverside Plaza
Suite 2750
Chicago, IL 60606
Phone: 312.564.4485

Pilot Plant
Project and Operations Office
GreatPoint Energy – Brayton Point, LLC.
1547 Fall River Avenue
Building 3 – Suite #3B
Seekonk, MA 02771
774.901.5626 – Main Line
774.901.5815 – Office Administrator,
Kelly Jo, Direct Line
774.901.5814 – Fax

About
GreatPoint Energy is a technology-driven natural resources company and the developer of a proprietary, highly-efficient catalytic process, known as hydromethanation, by which coal, petroleum coke and biomass are converted directly into low-cost, clean, pipeline quality natural gas, while allowing for the capture and sequestration of carbon dioxide (CO2).

GreatPoint Energy plans to build, own and operate large-scale natural gas production facilities strategically located at the intersection of natural gas pipelines and low-cost feedstock, as well as at locations where the CO2 produced and captured in its process can be geologically sequestered. The Company has identified numerous such locations and is in advanced development of its first commercial facility.

The Company’s cost of production is expected to be significantly lower than current prices of new drilled natural gas and imported liquefied natural gas (LNG), and the natural gas it produces, called bluegas™ meets all high-grade natural gas quality specifications. It can be transported through the thousands of miles of pipelines already in place around the world and can be used interchangeably with drilled natural gas for all applications, including power generation, residential and commercial heating, and the production of chemicals.

The Company has raised $140 million to date and is backed by leading strategic investors including The Dow Chemical Company, Suncor Energy, AES Corporation, and Peabody Energy, as well as major financial institutions and venture capital firms, including Kleiner Perkins Caufield & Byers, Khosla Ventures, Draper Fisher Jurvetson, Advanced Technology Ventures, and Citi’s Sustainable Development Investments.

Technology

Hydromethanation is an elegant and highly efficient process by which natural gas is produced through the reaction of steam and carbonaceous solids in the presence of a catalyst. The process enables the conversion of low-cost feedstock such as coal, petroleum coke and biomass (wood waste, municipal solid waste, and energy crops such as poplar and switchgrass) into clean, high-purity methane.

The chemistry of catalytic hydromethanation involves reacting steam (2H2O) and carbon (2C) to produce methane (CH4) and carbon dioxide (CO2) according to the following reaction:

Hydromethanation Reaction

The first step in the hydromethantion process is to combine the catalyst with the feedstock in such a way as to ensure that the catalyst disperses throughout the matrix of the feedstock for effective reactivity. The catalyst/feedstock material is then loaded into the hydromethanation reactor. Inside the reactor, pressurized steam is injected to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal or biomass. These reactions (shown below) catalyzed in a single reactor and at the same low temperature, generate a mixture predominately composed of methane and CO2.

Hydromethanation Reactions

The overall combination of reactions is thermally neutral, requiring no addition or removal of energy, making it highly efficient.

The proprietary catalyst formulation is made up of abundantly available, low-cost metal materials specifically designed to promote gasification at the low temperatures where water gas shift and reactions concurrently take place. The catalyst is continuously recycled and reused within the process shown below.

Hydromethanation Process

By adding this catalyst to the system, GreatPoint Energy is able to reduce the operating temperature in the gasifier while directly promoting the reactions that yield methane. Under these mild “catalytic” conditions, less expensive reactor components can be utilized, pipeline grade methane is produced, and very low-cost carbon sources (such as lignites, sub-bituminous coals, petroleum coke and biomass) can be used as feedstock.

As part of the overall process, the bluegas™ technology enables the recovery of contaminants in coal, petroleum coke and biomass as useful byproducts. In addition, roughly half the carbon in the feedstock is removed and captured as a pure CO2 stream suitable for sequestration.

Hydromethanation yields dramatically improved economics for the production of natural gas and an environmental footprint equivalent to that of the most environmentally-friendly commercial fuel.

Luca Technologies Inc.

Luca Technologies Inc.

Golden Office Gillette Office

LUCA Technologies Inc. LUCA Technologies Inc.
500 Corporate Circle PO Box 7070
Suite C Gillette, WY 82717
Golden, Colorado 80401

(303) 534-4344 Phone (307) 686-9488 Phone
(303) 534-1446 Fax (307) 686-9472 Fax
(877) 445-7082 Toll Free
info@lucatechnologies.com email

 

About
International Energy Agency

LUCA Technologies is developing a novel, long-term, biotechnology-driven solution to rising U.S. dependence on foreign energy sources. Addressing the $150 billion domestic natural gas market, the company is leveraging the ability of naturally occurring microorganisms to convert under-utilized domestic oil, organic-rich shale and coal resources to clean, renewable energy.

The company’s business is characterized by:

* A technology platform based on the discovery, characterization and management of naturally occurring consortia of ancient, anaerobic microorganisms (those that live without oxygen) that metabolize oil, organic-rich shale and coal within the earth into natural gas, thus generating clean renewable energy in a continuous, “real time” fashion. LUCA employs genomics, molecular biology and other tools of biotechnology to detect, classify and study these organisms and the underground “Geobioreactors” in which they act. Company scientists are also developing methods of managing specific consortia’s gas production capabilities in situ for the large-scale production of natural gas and potentially, hydrogen.

* A growing library of coal seam, organic-rich shale and oil field cores from massive hydrocarbon accumulations, each with its own consortia of anaerobic microorganisms for study.

* A management team whose expertise combines a long track record of developing energy resources within the oil and gas industry with scientific expertise in molecular biology, microbiology and biochemistry and their application to renewable energy.

Domestic energy needs in the United States far outstrip today’s readily accessible energy resources, which has forced an ever-increasing dependence on foreign fuels. At the same time, existing U.S. energy resources are significantly underutilized, in part due to the inefficiencies of even the most modern extraction methods employed today. LUCA is developing methods for optimizing the natural gas-producing activity of natural Geobioreactors it identifies, as well as methods of turning other energy resources – such as oil wells that are no longer actively producing – into efficiently functioning Geobioreactors. In doing so, LUCA believes it will open the door to the creation of a new industry with the potential to solve U.S. domestic energy needs long-term, as well as provide a cost-effective, reliable and renewable source of the cleanest burning hydrocarbon fuel.

LUCA is currently working to demonstrate the viability of its technology not only in the laboratory, but also in the real world. The company initially expects to provide consulting services to existing energy producers, helping them to evaluate their current oil, organic-rich shale and gas holdings for the presence of natural Geobioreactors or the potential for Geobioreactor stimulation. LUCA will then leverage the further in situ development of its technology in partnership with those oil and gas producers, and the company may also develop specific sites and Geobioreactor production programs on its own.

Technology

LUCA Technologies has recently discovered that on-going biogenic production of methane (natural gas) is taking place today in a number of large coal fields in the United States. This methane production is the result of indigenous populations of microorganisms that, in the absence of oxygen, metabolize the large hydrocarbon molecules present in coal and oil into smaller hydrocarbons, principally methane. The company describes these naturally occurring methane factories as “Geobioreactors”.

To leverage this discovery, LUCA has undertaken a program to understand and manipulate these microorganisms in order to ultimately maximize methane production in existing Geobioreactors, and hopefully stimulate its production in currently non-reactive hydrocarbon deposits. Methane is the least polluting and most energy efficient of all the available hydrocarbon fuels. LUCA believes that, if developed and managed properly, methane-producing Geobioreactors have the potential to meet U.S. energy needs for the foreseeable future.

LDK Solar Co., Ltd.

Factory:Hi – Tech industrial Park Xinyu Jiangxi P. R. C.
ZIP:338032
WEB: http://www.ldksolar.com
E-mail: ir@ldksolar.com ; sales@ldksolar.com

LDK  Solar USA,Inc.
1290 Oakmead Parkway ,Suite 306
Sunnyvale ,   CA 94085   USA
TEL: +1-408-245-0858
Fax: +1-408 245 8802

About

As the worldwide demand for electricity increases and the historical reliance on fossil fuels is being challenged by increasing environmental awareness, the focus has turned to renewable energy sources. As a reliable and versatile form of renewable energy, solar photovoltaic (PV) systems are expected to become a dominant energy source. According to market research, PV is expected to account for over 50% of the world’s total electricity generated by renewable energy sources by 2070.

LDK Solar is a pure-play manufacturer dedicated solely to the design, development, manufacturing and distribution of multicrystalline solar wafers. Wafers are the principal raw material used to produce solar cells, which are devices capable of converting sunlight into electricity. Their manufacturing process is based on proprietary production processes utilizing both virgin and recyclable polysilicon for ingot production. Through this proprietary process, they are able to offer their global solar cell and module manufacturer customers considerable cost advantages while maintaining quality and performance. LDK Solars also provides wafering services to both multicrystalline and monocrystalline solar cell and module manufacturers.

LDK Solar made their first commercial shipment of solar wafers in April 2006 and have quickly become one of the leading manufacturers in the industry, with their annual production capacity expected to increase to 400 megawatts, or MW by the end of 2007 from 215 MW as of March 31, 2007.

Their headquarters and their large scale, state-of-the-art manufacturing facilities are located in Hi-Tech Industrial Park, Xinyu city, Jiangxi province in the People’s Republic of China.

Products

LDK Solar manufactures and sells multicrystalline solar wafers. They currently produce and sell multicrystalline wafers in two principal sizes of 125 by 125 mm and 156 by 156 mm, with thicknesses from 180 and 240 microns.

LDK also provides wafering services to both monocrystalline and multicrystalline solar cell and module manufactures, which provide us their own ingots to be sliced. They charge a fee based on the number of wafers to be sliced.

The main technological process of multi-crystalline wafers contains: ingot and wire saw.

Strategic relationships with world class PV equipment manufacturers GT
Solar(USA) HCT (Switzerland), support LDK on equipment, process and
technology.Cooperate with Shanghai Jiaotong University formed “Shanghai
Jiaotong University-LDK Solar R&D Lab” engages in industry leading or LDK
R&D projects, endeavor together toreach state-level lab, supply technology
support for LDK to develop into a world class wafer manufacture.
Cooperate with Nanchang University formed “Nanchang University-LDK
Solar Research Center”, research in projects such as wafer purification,
crystallization improvement, and wire breakage reduction etc.

Ingot
        1、Muticrystalline DSS capacity : 275kg/ingot (standard)
2、Ingot size: 690mm(L)× 690mm(W)×240mm(H)

Multi-crystalline wafer

Conductivity type:P
Dimension: 103×103±0.5mm ,125×125±0.5mm,150×150±0.5mm,156×156±0.5mm,210×210±0.5mm
Shape:Square
Resistivity:0.5Ω/cm-3Ω/cm
Lifetime: ≥2μs
Oxygen concentration ≤ 1×1018atom/cm3
Carbon concentration ≤ 5×1016atom/cm3
Thickness:200μm± 20μm, 220μm± 20μm,240μm± 20μm
TTV:≤ 50 μm
BOW:≤ 30 μm
Saw mark:≤ 10 μm
Chips:L≤1mm, D≤1mm,Max. 2 places
Crack and pinhole: no cracks and pin holes visible with the naked eyes
125×125
150×150
156×156
210×210

Mono-crystalline wafer

Lifetime: ≥10μs
BOW:≤35 μm
Resistivity: 0.5—3,3—6,6—10Ω·cm
Oxygen concentration ≤ 1×1018atom/cm3
Carbon concentration ≤ 5×1016atom/cm3
Dimension: 125mmX125mm±0.5mm ,156mmX156mm±0.5mm
Thickness: 200μm ,220μm, 240μm(±20μm)
TTV:≤ 50 μm
Squareness Angle Variety : <0.6mm
Squareness Angle: 90°±0.25°
Crystal direction : ≤100≥
125×125
156×156

EnerDel Inc.

EnerDel, INC. – Lithium Power Systems

8740 Hague Rd
Indianapolis, IN
United States of America
46256
+1-317-585-3456
+1-317-585-3444

About

EnerDel is developing Lithium-ion battery (LIB) solutions for automotive manufacturers that will improve the performance, fuel-efficiency and cost of HEVs. EnerDel’s new, highly reliable and safe batteries are designed to be lighter in weight, occupy less space, provide more power, more energy and have a longer life than the nickel metal hydride (NiMH) batteries found in today’s HEVs.

EnerDel will manufacture its batteries in Indiana utilizing a unique, highly automated manufacturing process. EnerDel expects to succeed as being the first company to cost-competitively mass-produce a Li-ion battery in the United States. By serving as a local supplier of advanced performance batteries, EnerDel is able to contribute to the success of the automotive companies who manufacture hybrid electric vehicles in North America.

EnerDel’s lithium ion batteries (LIBs) offer advantages beyond the automotive sector. EnerDel’s HEV battery technology can also be used for specialty battery applications such as military and aerospace, asset tracking, medical and other select markets.

Products

EnerDel currently develops lithium ion cells for a variety of applications. They also provide integrated systems consisting of cells, management controls, and mechanical packaging.

Li-ion Cells

EnerDel Cell A5 CellEnerDel has developed advanced lithium-ion battery technologies for use in Hybrid Electric Vehicle (“HEV”), Plug-in Hybrid Electric Vehicles (“PHEV”) and Electric Vehicle (“EV”) applications. EnerDel is developing the core lithium titanate battery technology for HEVs and PHEVs under awards from the United States Advanced Battery Consortium (“USABC”). USABC is a consortium of three major U.S. auto manufacturers (Ford, General Motors and Chrysler) with funding provided by the Department of Energy. In addition, EnerDel has developed an EV lithium-ion battery designed to achieve the higher energy density required for EVs, such as for the Th!nk City EV.EnerDel believes that their batteries and technology offer significant competitive advantages because of their safety, power, energy and other performance characteristics. Additionally, their battery packs are designed to accommodate all of the complex electronic and design features of automotive applications.EnerDel’s technology stems from initial developments with Argonne National Laboratory, combined with industry know-how and expertise from the lithium-ion industry in Japan, as well as systems expertise from the automotive industry, including from Delphi Corporation. Controls Management

EnerDel can offer smart electronics to manage the following system functions:

  • Charge / Discharge
  • Thermal Management
  • Cell Balancing
  • State of Charge (SOC) / State of Health

For ease of integration software is also developed by EnerDel to allow for external monitoring of battery status.


Electronic Controls DiagramElectronic ControlsSystems Integration

Battery PackSystem Integration  Battery Pack

Product Engineering

  • Strong experience in battery product development:
    • R&D, Design, Build, Test, Validation
    • Automotive and non-automotive
    • High-voltage Power Systems
  • Manufacturing Engineering
    • Quality controls
    • Lean principles

Battery Pack Products

  • 12 Volt Battery Pack
    • 4A-hour “smart pack
    • Designed for transportation / industrial applications
    • Flexible architecture for varying capacities and cell characteristics
  • 24 Volt Battery Pack
    • Standard product for control systems, telecom, battery backup, and UPS applications
    • Flexible electronic architecture for ~20V to 40V systems
  • 80 Volt battery pack
    • 1% accurate SOC and real-time impedance reporting
    • Communication: I²C & UART
    • Certified to UN shipping requirements

Ausra, Inc.

Ausra, Inc.

Ausra, Inc.
2585 East Bayshore Rd.
Palo Alto, CA 94303

phone: 650.424.9300
fax: 650.494.3893

Email:
General Information: info@ausra.comAbout
Ausra develops and deploys utility-scale solar technologies to serve global electricity needs in a dependable, market competitive, environmentally responsible manner.

Amid growing public demand for clean energy, Ausra offers solar thermal electric power stations that provide large-scale low-cost, reliable, renewable energy. Unlike competing approaches, Ausra’s technology is proven, easily manufactured and installed, and scalable to high volume.

Ausra’s zero-carbon power plants generate electricity at current market prices for fossil-fired power without the emissions caused by burning fuels. Solar concentrators boil water with focused sunlight, generating high-pressure steam that drives conventional turbine generators. Low-cost thermal energy storage systems now under development by Ausra will allow solar electric power to be generated on demand, day and night.

Electric utilities in the U.S. and worldwide are under growing pressure to expand their deliveries of clean, renewable power. The Ausra team brings together expertise in solar energy research, engineering, manufacturing, power project development and finance to address this need. The company designs, manufactures and deploys low-cost, large-scale, solar electric power stations, selling electric power at prices competitive with today’s fossil-fired generation.

Ausra’s core technology, the Compact Linear Fresnel Reflector (CLFR) solar collector and steam generation system, was originally conceived in the early 1990s at Sydney University. It was first commercialized by Solar Heat and Power Pty Ltd. in 2004 in Australia and is now being refined and built at large scale by Ausra around the world.

CLFR technology has significant advantages in cost, scalability and emissions profile. Ausra develops large-scale power projects incorporating CLFR solar fields, and helps utilities generate clean energy for millions of customers.

Innovation in Action

  • Research and Development: Ausra’s core group of chemists, physicists and engineers are working on optics, coatings, materials and manufacturing processes to improve the performance and reduce the cost of solar collector systems, thermal energy storage systems and power plant cooling systems. Their ongoing refinements to Ausra’s technology will continue to reduce costs and extend Ausra’s leadership in these fields.
  • Engineering: Ausra’s engineering managers and engineers come from a variety of disciplines across the electric power industry. The team optimizes Ausra’s existing technologies for production, and brings new technologies from R&D into volume manufacturing. Ausra partners with leading consulting engineering firms to test and verify energy production and lifecycle performance of its plants.
  • Manufacturing: Ausra’s approach to solar plant production emphasizes manufacturing facilities located near power plants, low-cost commodity materials (steel, glass and concrete), and mass produced components. Ausra operates its own production facilities for the manufacture of its solar collectors to deliver the highest performance at lowest possible system costs.
  • Project Management: Ausra draws experts from many sectors of the energy industry to manage land permits, project finance and power purchase agreements. The team has a strong track record of success with multiple generations of technologies.

Solar Thermal Electric Power is Energy Independence and Security
We have a secure source of electric power with guaranteed stable prices, no emissions, and the ability to scale to meet all our needs. With a 20-year track record of over 99 percent availability, solar thermal electric power has proven to be a dependable source of electric power for America’s growing energy needs. Solar power is entirely domestically produced, is protected against fuel price and availability fluctuations, and is secure against future costs of carbon emissions.

Ausra’s innovations in collector design dramatically reduce the cost of solar thermal generation equipment and bring solar

power to prices directly competitive with fossil fuel power.

Using Ausra’s current solar technologies, all U.S. electric power, day and night, can be generated using a land area smaller than 92 by 92 miles.

Ausra’s business will benefit local economies by bringing “green collar” manufacturing and operating jobs to rural communities. By delivering clean, reliable energy at market-competitive prices, Ausra will help meet America’s growing needs for climate-friendly power while maintaining consumer-friendly prices.

Sopogy

Sopogy

Corporate Solar Solutions Center
2660 Waiwai Loop
Honolulu, Hawaii 96819
US Toll Free: (866) 767-6491, (866-Sopogy1)
International Phone: (808) 237-2409
FAX: (808) 356-0565

West Coast Solar Solutions Center
1735 Technology Drive, Suite 400
San Jose, California 95110
US Toll Free: (866) 767-6491, (866-Sopogy1)
FAX: (408) 351-8883

Southwest USA Solar Solutions Center
2942 N 24th Street, Suite 114
Phoenix, AZ 85016
US Toll Free: (866) 767-6491, (866-Sopogy1)
FAX: (602) 391-2000What They Do
Sopogy is a leader in MicroCSP technologies that bring the economics of proven large scale Concentrating Power Systems (CSP) to the distributed generation markets. MicroCSP technologies are used to create Process Heat, Solar Air Conditioning or Electrical Power. For more information on the technology visit our How It Works page.

About

Originally founded in 2002 at the Energy Laboratories an energy concept incubator of Energy Industries, Sopogy is focused at bringing a new renewable energy technology to the market. The future is clean power, green systems and LEED™ smart buildings. The Sopogy energy system is enabling the solar energy revolution and for our customers “every day is a Sopogy day™”.

Philosophy
Sopogy is dedicated to helping their customers achieve their renewable energy goals. Using their solar energy systems to produce electricity, process heat or solar A/C we maximize energy production while minimizing costs.

Mission
Sopogy’s mission is to invent, manufacture and sell the world’s most innovative and affordable solar collectors. Their company strives to become part of the solution to global problems including climate change, energy security and sustainability.

Goals:

* Establish a global solar energy brand.
* Make solar energy competitive to fossil fuel energy worldwide.
* Achieve entrepreneurial success.
* Create solar solutions that improve the quality of life for all human kind.
* Bring order and simplicity to the chaos which is the current solar power business.

Technology

Sopogy MicroCSP technologies present a new and unique approach to harnessing the power of the sun.
Sopogy MicroCSP